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Third-order Cartesian overset mesh adaptation method for solving
steady compressible flows
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SUMMARY

A third-order mesh generation and adaptation method is presented for solving the steady compressible
Euler equations. For interior points, a third-order scheme is used on Cartesian and curvilinear meshes.
Concerning the mesh adaptation, the method of Meakin is also extended to third order. The accuracy of
the new overset mesh adaptation method is demonstrated by a grid convergence study for 2-D inviscid
model problems and results are compared with a second-order method. Finally, the method is applied
to the computation of an inviscid 3-D flow around a hovering blade of the ONERA 7A helicopter rotor
exhibiting an improvement in the wake capture. With a 7 million point mesh, the tip vortex can be
followed for more than three rotor revolutions with the third-order method. The CPU time needed for
this calculation is only 3% higher than with a conventional second-order method. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The chimera method is a domain decomposition approach using overset body conforming grids.
In this approach, each component of a configuration is meshed separately and overset onto a
background grid to form the complete computational domain. This method introduced in 1983 by
Steger et al. [1] has become popular to compute flows around complex geometries. However, the
required number of points for an accurate capture of complex flows can become high very quickly.
To overcome this difficulty, Meakin [2] proposed a mesh adaptative refinement method within
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systems of overset Cartesian grids. This method has been developed by Benoit and Jeanfaivre [3]
and successfully applied to the capture of the vortical wake of helicopter rotors in hovering flight
by solving the Euler equations using the Jameson, Schmidt and Turkel [4] (JST) scheme. The first
interest of the automatic approach of Meakin is to simplify the mesh generation process. As a matter
of fact, generating structured grids with no constraints on the outer boundary is far simpler than
multi-block structured mesh generation. Other interests inherent to the use of Cartesian grids are
that they have a simpler and faster solver, do not require the metric storage and enable high-order
numerical schemes to be simply written.

The purpose of the present study is to improve this mesh adaptation method by increasing the
order of accuracy of the numerical scheme. Numerous works have been devoted to high-order
schemes for the Euler or Navier–Stokes equations (see, for instance, the recent survey lectures in
Reference [5]). Here, we have chosen to keep close to the JST scheme frequently used in industrial
codes and to consider the third-order extension of this scheme proposed by Cinnella and Lerat [6]
and Cinnella et al. [7]. This finite-volume scheme is third-order accurate on moderately deformed
grids and at least second-order accurate on highly deformed grids. Recent studies have shown
that it is possible to extend these high-order numerical schemes to overset-grid topologies [8].
Nevertheless, linear interpolation is unable to keep the global accuracy of an overset-grid method
[9] and consequently the use of high-order interpolation is required.

In this paper, we first recall in Section 2 the third-order finite-volume scheme on curvilinear
meshes and its finite difference version on Cartesian grids. In Section 3, we briefly recall the basic
mesh adaptation technique; then we describe the new developments.

The accuracy of the transfers of numerical solution between Cartesian grids is increased by
using Lagrange interpolation. In Section 4, the improvements to the initial method are illustrated
for a steady vortex, a subsonic flow past a NACA0012 airfoil, then the third-order method is
applied to an inviscid 3-D flow field around a hovering blade of the 7A helicopter rotor.

2. THIRD-ORDER SCHEME FOR INTERIOR POINTS

For interior points, we use the numerical scheme of Cinnella and Lerat [6] and Cinnella et al.
[7] which is third-order accurate, even on curvilinear meshes. Let us recall the main features of
this scheme in two space dimensions. We first present the finite-volume formulation on a general
structured mesh, introduce the numerical flux and the treatment of the volume integral term;
then we present the formulation of this scheme on a Cartesian mesh and finally the numerical
dissipation.

2.1. Numerical flux

Consider the 2-D hyperbolic system of conservation laws expressed in integral form as

d

dt

∫
�

wd�+
∫

��
F(w) ·n d�=0 (1)

where � is a bounded domain with boundary ��, n is the unit outward normal to �� and
F(w)=[ f (w),g(w)] is the flux density.
For the Euler equations

wt + f (w)x +g(w)y =0 (2)
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Figure 1. Definitions for mesh cells.

with

w=

⎛⎜⎜⎜⎜⎝
�

�u

�v

�E

⎞⎟⎟⎟⎟⎠ , f (w)=

⎛⎜⎜⎜⎜⎜⎝
�u

�u2+ p

�uv

�uH

⎞⎟⎟⎟⎟⎟⎠ , g(w)=

⎛⎜⎜⎜⎜⎜⎝
�v

�uv

�v2+ p

�vH

⎞⎟⎟⎟⎟⎟⎠ (3)

where � is the density, p the pressure, u and v the Cartesian components of the fluid velocity, E
is the specific total energy and H =E+ p/� is the specific total enthalpy with, for a perfect gas

p=(�−1)�

(
E− u2+v2

2

)
(4)

Define a structured mesh composed of quadrangular cells � j,k (see Figure 1) and denote the cell
centers by C j,k , and the cell edges by � j+1/2,k or � j,k+1/2:

�� j,k ={� j+1/2,k, � j,k+1/2, � j−1/2,k, � j,k−1/2} (5)

Applied to the cell � j,k , the conservation laws (1) become

d

dt

∫
� j,k

wd�+ ∑
�∈�� j,k

∫
�
F(w) ·n d�=0 (6)

The numerical flux density Fj+1/2,k through the edge � j+1/2,k of the cell � j,k is an approxima-
tion to

1

|� j+1/2,k |
∫

� j+1/2,k

F(w) ·n d� (7)

To define a local reference frame on the edge � j+1/2,k , let � be an axis passing through the
adjoining cell center, oriented from C j,k to C j+1,k and let � be an axis on � j+1/2,k . Let E be the
intersection point of the � and � axes.
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Performing a Taylor expansion in the �-direction, we obtain the following third-order approxi-
mation of the exact flux:

1

|� j+1/2,k |
∫

� j+1/2,k

F(w) ·n d�=(�+�1��+�2���)|E +O(h3) (8)

with �=Fn and

�1=
∫
�(�−�|E )d�

|� j+1/2,k | =O(h) (9)

�2=
∫
�(�−�|E )2 d�

2|� j+1/2,k | =O(h2) (10)

where �|E is the coordinate of E on the �-axis (�|E =0) and h=|C j,kC j+1,k |.
In formula (8), �|E , ��|E and ���|E are, respectively, discretized to the third-, second- and

first-order accuracy. This is done in a centered way by using weighted average and difference
operators taking into account the locations of E and of the surrounding cell centers. Third-order
approximation of �|E is obtained by cancelling the error term introduced by weighted average
which discretizes �|E to second-order accuracy. Numerical flux is third-order accurate [7] on
moderately deformed meshes and at least second-order accurate on highly distorted meshes.

If the grid deformations were neglected, the above weighted numerical flux would be reduced to

Fj+1/2,k =(�1�− 1
8�

2
1�1�+ 1

24�
2
2�1�) j+1/2,k (11)

where �1, �2, �1 and �2 denote the following discrete operators:

(�1u) j+1/2,k = u j+1,k−u j,k, (�2u) j,k+1/2=u j,k+1−u j,k

(�1u) j+1/2,k = 1
2 (u j+1,k+u j,k), (�2u) j,k+1/2= 1

2 (u j,k+1+u j,k)
(12)

We will see later the improvements brought by the weighted formula (8).

2.2. Volume integral

For steady problems, which are our main concern in the present study, it is sufficient to approximate
the volume integral in the unsteady term of (1) by the simplest formula:

d

dt

∫
� j,k

wd�=|� j,k |wt | j,k+O(h2) (13)

where wt | j,k is the time derivative of w at the cell center of � j,k and |� j,k | is the cell area.
However, this volume integral term must be approximated to third-order accuracy in the general

case. This can be achieved on a general structured mesh [10]. Nevertheless, for the sake of
simplicity, we limit the presentation to the case of a regular Cartesian grid.

Denoting the space steps by �x and �y—of the same order, say O(h)—the volume integral can
be expanded as

(UT ) j,k = d

dt

∫
� j,k

wd�=�x�y

(
wt + �x2

24
wt xx + �y2

24
wt yy

)
j,k

+O(h4) (14)
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Using the local form of the conservation laws

wt =− fx −gy (15)

the unsteady term becomes

1

�x�y
(UT ) j,k =(wt ) j,k− �x2

24
( fxxx +gxxy) j,k− �y2

24
( fxyy+gyyy) j,k+O(h4) (16)

Using the above discrete operators �1, �2, �1 and �2, a fourth-order approximation of the unsteady
term is

1

�x�y
(ŨT ) j,k =(wt ) j,k− 1

24

(
�31�1 f

�x
+ �21�2�2g

�y
+ �1�1�

2
2 f

�x
+ �32�2g

�y

)
j,k

(17)

which can also be expressed as

1

�x�y
(ŨT ) j,k =(wt ) j,k− 1

24

[
�1
�x

(�21+�22)�1 f

]
j,k

− 1

24

[
�2
�y

(�21+�22)�2g

]
j,k

(18)

The time derivative has also to be accurately approximated. For an unsteady problem, a classical
explicit third-order Runge–Kutta method is used. For a steady problem, an implicit method based on
the first-order backward Euler method is chosen to get a quick convergence to the steady state and is
efficiently solved using a LU relaxation algorithm [11]. The semi-discrete schemes corresponding
to the weighted flux (8) and the non-weighted flux (11) with a third-order approximation of volume
integral are, respectively, called FVW-3 and FV-3 schemes.

2.3. Formulation of the scheme on a regular Cartesian mesh

Let us express the complete scheme for computing unsteady flows on a regular Cartesian grid,
since this type of grid is our main concern in our mesh adaptation technique. Here, we combine
the fourth-order accurate volume integral term (18) with the numerical flux which reduces to (11)
with �= f on � j+1/2,k and �=g on � j,k+1/2, that is

Fj+1/2,k =[(I − 1
8�

2
1+ 1

24�
2
2)�1 f ] j+1/2,k

Fj,k+1/2=[(I − 1
8�

2
2+ 1

24�
2
1)�2g] j,k+1/2

(19)

The finite-volume scheme becomes

1

�x�y
(UT ) j,k+

(
�1F

�x

)
j,k

+
(

�2F

�y

)
j,k

=0 (20)

and can be rewritten in the very simple form as[
wt + �1

�x

(
I − 1

6
�21

)
�1 f + �2

�y

(
I − 1

6
�22

)
�2g

]
j,k

=0 (21)

This Cartesian scheme is purely directional, i.e. it involves points only in the x and y directions
passing through the cell center C j,k . This formulation of the third order of numerical scheme on
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Figure 2. Mesh cells around a wall.

regular Cartesian grids, which can be seen as a finite difference formulation, is strictly equivalent
to the finite-volume approach. Expression (21) is much simpler than the general finite-volume
formula and will be implemented this way on the Cartesian grids of the mesh adaptation method
for efficiency reasons. This specific formulation on Cartesian grids is called DNC.

2.4. Numerical dissipation

To ensure numerical stability and avoid spurious oscillations, a numerical dissipation is added to
the present third-order method. For simplicity, we use the Jameson artificial dissipation [4]. For
instance, for the Cartesian scheme, this leads to the modification of the numerical fluxes in the j
direction (with similar modification in the k direction) as follows:

Fj+1/2,k =(F−D) j+1/2,k (22)

with the dissipation

(D) j+1/2,k =�(A j+1/2,k)(	2�1w−	4�
3
1w) j+1/2,k (23)

where A j+1/2,k is an average of the Jacobian matrix A=d f/dw, �(A) denotes the spectral radius
of matrix A and

	2| j+1/2,k =k2max(
 j,k,
 j+1,k), 	4| j+ 1
2 ,k =max(0,k4−	2| j+1/2,k) (24)


 j,k = |p j+1,k−2p j,k+ p j−1,k |
|p j+1,k+2p j,k+ p j−1,k | (25)

where p is the static pressure and k2, k4 are constant parameters. In a region where w is smooth,
	2=O(h2) and 	4=O(1), so that the dissipative terms are O(h3) and the whole scheme remains
third-order accurate.

2.5. Wall slip boundary condition

Consider a mesh cell � j,k adjacent to a rigid wall W and denote by nW the normal to the edge
� j,1/2=�W located on the wall (see Figure 2). The boundary of � j,1 is made of four edges:

�� j,1={�W , � j,3/2, � j+1/2,1, � j−1/2,1} (26)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:811–838
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By multiplying the momentum equation in the cell � j,1 by the wall normal nW , we obtain the
normal momentum equation:

d

dt

∫
� j,1

�nW ·V d�+
∫

�� j,1

[�nW ·V (V ·n)+ pnW ·n]d�=0 (27)

where V =(u,v) is the fluid velocity. On the edge �W , n=nW and due to the slip condition

(V ·n)W =0 (28)

so that the wall momentum flux reduces to∫
�W

pd� (29)

The time derivative of the normal momentum in � j,1—i.e. the first integral in (27)—vanishes at
a steady state. In the transient phase, the slip condition yields that this integral remains small. By
neglecting it, we compute the normal flux from (27) as∫

�W

pd�=−
∫

� j,3/2, � j+1/2,1, � j−1/2,1

[�nW ·V (V ·n)+ pnW ·n]d� (30)

where the fluxes in the right-hand side are obtained through centered formulae. This gives the
pressure pW on the edge �W :

pW =−nW
1

(��)W
[(�1���) j+1/2,1+(�1���) j−1/2,1+(�2���) j,3/2] (31)

where �� denotes an edge length and

�=
(
F (2)(w) ·n
F (3)(w) ·n

)
(32)

F (2) and F (3) being the second and the third lines, respectively, of the flux density in (1)

F (2) =[�u2+ p, �uv], F (3) =[�uv, �v2+ p] (33)

Practically, the conservative variables in the cell � j,1 are advanced at time (n+1)�t using the
numerical scheme, except for the edge �W , where the flux is obtained from pW given by (31) at
time n�t .

3. THIRD-ORDER MESH ADAPTATION METHOD

In the mesh adaptation method [2, 3] studied in this paper, short curvilinear grids (called ‘body’
grids) are defined around the bodies and the complete computational domain is discretized by
automatically generated and adapted Cartesian grids. These Cartesian grids are adapted following a
refinement indicator, based on the numerical solution and computed on the mesh. The mesh adapted
to the refinement indicator is obtained by determining homogeneous clusters in the refinement
field. For this purpose, the algorithm makes use of a dichotomic/fusion approach. Then, on each
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Figure 3. Interpolated points for third-order chimera.

cluster a uniform Cartesian grid is generated. The number of points after a remeshing is controlled
by a growing factor defined by the user.

Communication transfers between curvilinear and Cartesian grids are ensured through the
chimera method. In the chimera method, mesh points are classified into three categories: ‘hole’
points, ‘interpolated’ points and ‘interior’ points. Hole points lie physically inside a body and are
consequently not computed, interpolated points are evaluated by interpolation of the flow field
of another grid and ‘interior’ points are updated through the interior numerical scheme. For an
interpolated point, Lagrange polynomials are used in the case of transfer between Cartesian grids
and triangular or tetrahedral linear interpolation is applied in the case of transfer between a body
grid and a Cartesian grid.

In our previous version of the method, the numerical scheme for interior points was the classical
finite-volume JST scheme [4] and the mesh adaptation method was also second-order accurate.

3.1. Third-order interpolation

After having increased the order of accuracy of the interior numerical scheme, the order of
accuracy of chimera transfers must also be increased. This is realized for interpolations between
Cartesian grids by using directional Lagrange polynomials. Let n+1 distinct interpolation points
x j , j =0, . . . ,n, be given, together with corresponding set of values f j . Let

∏
n denote the vector

space of all polynomials of degree at most n. The classical problem addressed here is to find the
polynomial p∈∏n that interpolates f at the points x j , i.e.

p(x j )= f j , j =0, . . . ,n (34)

The problem is well posed, i.e. it has a unique solution that depends continuously on the data. The
solution can be expressed in Lagrange form as

p(x)=
n∑
j=0

f j l j (x), l j (x)=
∏n

k=0,k �= j (x−xk)∏n
k=0,k �= j (x j −xk)

(35)

The Lagrange polynomial l j corresponding to the node x j has the property

l j (xk)=
{
1, j =k

0 otherwise
(36)

In this work, n is chosen equal to 2. Consider the interpolation in one-space direction between
two grids A and B (see Figure 3). Let x a point to be interpolated on the grid A (see Figure 3)
and �x=|xi+1−xi |, i>0.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:811–838
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Figure 4. Minimum overlap with one layer of interpolated cells.

The third point x0 on grid B is chosen such as⎧⎨⎩x0= x1−�x if |x−x1|<�x

2

x0= x2+�x otherwise
(37)

3.2. Modification of numerical flux for one layer of interpolation cells

In the chimera method, the number of grid points in the overlap region has to be sufficient to
ensure a proper communication between the grids: an interpolated point must be computed from
‘interior’ points. If a valid interpolation cell cannot be found, the interpolated point is called an
orphan point. Instead of finding a proper treatment for orphan points, an alternative procedure is
to avoid their occurrence. For this purpose, only one layer of interpolated cell is chosen, even for
a 5-point scheme in 1-D as proposed in Reference [12]. Of course, numerical fluxes have to be
modified for the interfaces near interpolated points, if possible, without loss of accuracy.

Let us examine the situation of Figure 4. The values on the last cell face ( j+ 3
2 ,k) of grid A

are always interpolable, otherwise grid B would be too small and thus useless. Consequently, the
values on the last cell face are computed by Lagrange interpolation. The interior cell faces can
be computed by the current formula until the face ( j− 1

2 ,k). For the last interior face ( j+ 1
2 ,k),

we now present a technique to obtain the physical flux and the artificial viscosity flux with the
desired third-order accuracy without additional interpolation.

3.2.1. Physical flux on the last interior face. We recall that the interior numerical flux without
dissipation in direction j is given by the following formula:

Fj+1/2,k =(�1 f − 1
6�

2
1�1 f ) j+1/2,k (38)

In the case of overset between two Cartesian grids along the direction j and if we consider only
one layer of interpolation cells, the approximation of Fj+1/2,k must be modified. This is realized
by using a non-centered discretization that allows to preserve the third-order accuracy on the
derivative f . For one layer of interpolation cells, flux at ( j+ 1

2 ,k) is given by

Fj+1/2,k = 1
12 (2 f j+1,k+17 f j,k−11 f j−1,k+5 f j−2,k− f j−3,k) (39)

For a regular curvilinear mesh, we have chosen to modify the flux from the non-weighted version
of Fj+1/2,k given by

Fj+1/2,k =(�1�− 1
8�

2
1�1�+ 1

24�
2
2�1�) j+1/2,k (40)
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By using a non-centered approximation this flux becomes

Fj+1/2,k = 1
16 (9� j,k+8� j+1,k−� j−1,k−�1� j+3/2,k)+ 1

24�
2
2�1� j+1/2,k (41)

with �1� j+3/2,k defined by the second-order non-centered approximation:

�1� j+3/2,k = 8
3� j+3/2,k+ 1

3� j,k−3� j+1,k (42)

3.2.2. Artificial viscosity flux on the last interior face. First of all, the sensor 
 given by (25) is
modified in the last cell. It is estimated by using a second-order approximation for the second
derivative:


 j+1,k = |2p j,k+ 16
5 p j+3/2,k− 1

5 p j−1,k−5p j+1,k |
|2p j,k+ 16

5 p j+3/2,k+ 1
5 p j−1,k+5p j+1,k |

(43)

The first-order difference involved in the artificial viscosity is computable as usual. For the third-
order difference of a scalar field w in point ( j+ 1

2 ,k), a non-centered second-order accurate formula
is used:

�w j+3/2,k = 8
3w j+3/2,k+ 1

3w j,k−3w j+1,k (44)

4. NUMERICAL ASSESSMENT OF ACCURACY

In this section, the actual orders of accuracy of JST method and of the third-order method are
evaluated from a steady vortex test case on single block Cartesian and curvilinear meshes. Then,
the computations are performed on overlapping meshes to show the importance of the order of
accuracy of interpolations. The coupling between the third-order scheme and mesh adaptation
method is performed for a subsonic flow past an NACA0012 airfoil. The order of accuracy is
determined by grid convergence for each computation. Finally, the third-order method is applied
to the computation of an inviscid flow around a hovering helicopter blade and results are compared
with the second-order method.

4.1. Steady vortex

We consider the 2-D inviscid vortex proposed by Yee et al. [13] for which the entropy is uniform.
The vortex is located at the origin (x= y=0) in a flow at rest. Its velocity components u, v and
the absolute temperature T are defined in non-dimensional form as

(u,v) = �

2�
e(1−r2)/2(−y, x)

T = − (�−1)�2

8��2
e1−r2

(45)

where r2= x2+ y2. The vortex strength � is set equal to �=5 and the specific heat ratio is
�=1.4. The uniformity of entropy gives �=T 1/(�−1). This vortex is a steady solution of the Euler
equations using the above vortex as the initial condition and periodic boundary conditions. The
observed evolution is uniquely due to the numerical errors. The objective is to assess the real order
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Figure 5. View of stretched and randomized Cartesian grids—Yee vortex.

Table I. Order of accuracy of different schemes on Cartesian meshes—Yee vortex.

Cartesian meshes

Scheme Uniform Stretched Irregular

JST 2 1.93 1.1
JSTW 2 1.9 1.75
DNC 3 xx xx
FV-3 3 2.34 1.1
FVW-3 3 3 2.5

of accuracy of DNC (Cartesian mesh version), FV-3 (non-weighted version for a general mesh)
and FVW-3 (weighted version) schemes in comparison with the original JST scheme.

4.1.1. Single block meshes. All computations are performed on the domain [−5,5]×[−5,5]. In
a first step, three kinds of Cartesian grids are used: uniform, stretched and randomized grids
(Figure 5). In each case, the numerical error is evaluated using three grids of increasing refinement
corresponding to �x=0.4, 0.2 and 0.1 in the uniform grid case. The computed flow density is
compared with the exact density distribution. For these calculations, a weighted version of the
classical JST scheme has been developed, it will be called JSTW scheme. In order to realize
this extension, the technique is the one described in Section 2.2 but with a numerical flux of
second-order accuracy. On the other hand, on regular Cartesian grids, FVW-3 and FV-3 schemes
are obviously identical to DNC formulation.

JST and JSTW schemes have been coupled with the second-order accurate four-stage Runge–
Kutta explicit [4]method and DNC, FV-3 and FVW-3 schemes have been used with an explicit third-
order Runge–Kutta method. Besides, in order to minimize the influence of the time discretization,
the numerical solution is computed only at time t=0.1 and time steps are 0.1, 0.05 and 0.025 on
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Table II. Order of accuracy of different schemes on
curvilinear meshes—Yee vortex.

Curvilinear meshes

Scheme Regular Irregular

JST 1.96 0.83
JSTW 2.03 1.87
FV-3 2.72 1.03
FVW-3 2.74 2.4
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Figure 6. Matching boundaries—Yee vortex.

the coarse, medium and fine grid, respectively. Fourth-order linear coefficient of artificial viscosity
is chosen equal to 1

12 . There is no addition of second-order non-linear artificial viscosity. For JST
scheme, the computed accuracy orders (see Table I) are 2, 1.93 and 1.1, respectively, for uniform,
stretched and irregular grids. As expected, the DNC formulation provides an order of accuracy
of 3 on regular Cartesian meshes. We observe also that on an irregular Cartesian mesh, the order
of accuracy is reduced to 1 if the schemes are not weighted by the distances. On the other hand,
FVW-3 scheme is third-order accurate on all Cartesian meshes.

The finite-volume schemes have also been applied on curvilinear meshes (see Table II) and
the impact of the weighted discretization operators is measured. If the mesh is really stretched,
Table II shows that orders of accuracy of JST and FV-3 schemes are found to be 1. On the contrary,
FVW-3 scheme produces a lower error and order of accuracy is close to 2.4, in good agreement
with the theory.
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Figure 7. Non-matching boundaries (chimera)—Yee vortex.
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Figure 8. Accuracy study with matching boundaries—Yee vortex.

4.1.2. Overlapping Cartesian meshes. We now consider a domain with two overlapping Cartesian
regular meshes. Parameters of artificial viscosity are identical to the single mesh study. When
boundaries between the two meshes are matched (see Figure 6), interpolations should be exact
and only numerical scheme error should occur. Practically, the order of accuracy (see Figure 8)
is found out to be the same as in a single block mesh. In the case of non-matching boundaries
(see Figure 7), the order of interpolation accuracy is important. As expected, for these chimera
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Figure 9. Accuracy study with non-matching boundaries (chimera)—Yee vortex.

boundaries, the computed order of accuracy of DNC formulation is close to three only with
third-order interpolation (Figure 9).

4.2. Subsonic flow over an NACA0012 airfoil

In the present section, an inviscid flow over the NACA0012 airfoil at Mach number M∞ =0.63
and angle of attack �=2◦ is considered. Schemes corresponding to fluxes (8) and (11) are used
with the simple volume integral approximation (13), since they give, as expected, the same results
when used with approximation (18) of the volume integral for steady cases. Linear fourth-order
dissipation coefficient is chosen equal to 1

12 , there is no addition of second-order non-linear artificial
viscosity for all the computations and Courant–Friedrichs–Lewy (CFL) number is equal to 1000.

4.2.1. Single block curvilinear meshes. The accuracy of schemes is first investigated in a computa-
tional domain made of single block curvilinear meshes of C topology. Three meshes of increasing
density are considered with 69×11, 138×22 and 276×44 cells, respectively. In each grid, far-
field boundary is located at 20 chords from the airfoil. The finest mesh is partly represented in
Figure 10. As far as conservative variables are checked, quite similar solutions are obtained on
each grid with JST, FV-3 and FVW-3 schemes.

Typical solution on the fine grid is represented in Figure 11. The entropy error
∑

, which is a
very sensitive flow quantity is considered here to evaluate the accuracy of schemes. It is computed
by the following formula:

∑= s−s∞
s∞

(46)
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Figure 10. C-Grid 276×44 cells for NACA0012 airfoil, partial view.

Figure 11. Density lines with FVW-3 scheme (276×44).

where s= p/�� is an exponential of the entropy and s∞ the same quantity at infinity. In
Figures 12–14, the entropy error on the airfoil surface computed for each grid, respectively, in
the case of JST, FV-3 and FVW-3 schemes is plotted. We can observe that FV-3 and FVW-3
schemes give better result than JST scheme. Finally, the accuracy of schemes is evaluated
from the L2 norm of entropy error in Figure 15. The weighted third-order scheme FVW-3
provides an accuracy order which is close to 2.3, while the JST classical scheme is only 1.6 order
accurate.
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Figure 12. Entropy error at the wall for JST scheme on different meshes for NACA0012 airfoil.
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Figure 13. Entropy error at the wall for FV-3 scheme on different meshes for NACA0012 airfoil.

4.2.2. Automatic mesh Cartesian generation. No adaptation to the solution. JST and third-order
method are now compared on a composite curvilinear/Cartesian computational set of grids. On
regular Cartesian grids, the DNC formulation is favored for efficiency reasons. Consequently, the
third-order method corresponds to the coupling between DNC formulation on Cartesian grids and
FVW-3 scheme on body curvilinear mesh. For this computation, a body mesh of 201×14 cells
is extracted from the fine single block mesh (276×44). Initial background mesh (see Figure 16)
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Figure 14. Entropy error at the wall for FVW-3 scheme on different meshes for NACA0012 airfoil.
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Figure 15. Accuracy order for JST, FV-3 and FVW-3 schemes for NACA0012 airfoil.

consists of isotropic Cartesian grids, with overlap, generated automatically. The space increment of
the first Cartesian grid is chosen purposefully large and the mesh globally contains 30 000 points.

The solution and the convergence history with the third-order scheme are shown, respectively,
in Figures 17 and 18. The results show that JST and third-order schemes produce a significant
entropy error at the wall (Figures 19 and 20), in particular near the leading edge and trailing edge
regions. As a matter of fact, error made in Cartesian grid propagates up to the wall.
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Figure 16. Chimera mesh without adaptation, partial view.

Figure 17. Density lines with DNC/FVW-3 method for chimera mesh.

4.2.3. Automatic Cartesian mesh adaptation. In a second step, adaptation to the solution is
performed using refinement indicator based on the gradient of Mach number. Five remeshings are
made. Mesh is adapted to the numerical solution every 400 iterations, the first remeshing being
done after 400 iterations. The number of points is increased by a growing factor �=1.25 for the
five remeshings. Results are given after 5000 iterations and the convergence history of the compu-
tation is plotted in Figure 21. The peaks that are observed are due to remeshings. They correspond
to interpolation of the solution on the new generated mesh from solution of the preceding mesh.
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Figure 18. Convergence history (CFL=1000) on chimera mesh.
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Figure 19. Entropy error at the wall for JST method on the fine single block mesh and on the chimera mesh.

Figure 22 shows that the mesh is refined in the vicinity of the leading edge and trailing edge and
the solution is shown in Figure 23. We observe in Figures 24 and 25 that adaptation allows to
reduce errors by a large amount in these regions. For JST and DNC/FVW-3 methods, entropy
error is comparable to error on single block mesh.
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Figure 20. Entropy error at the wall for FVW-3 scheme on the single block mesh and for
DNC/FVW-3 on the chimera mesh.
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Figure 21. Convergence history (CFL=1000) with adaptation.

4.3. Inviscid flow around a hovering helicopter blade

The third-order mesh adaptation technique is applied now to the computation of the inviscid flow
around an isolated blade of the ONERA 7A helicopter rotor in hover. The Cartesian topology is
not very well adapted to the calculation around a hovering rotor. It is more judicious to choose
a cylindrical topology as in the work of Canonne et al. [14], which also uses an automatic mesh
adaptation technique. However, the Cartesian mesh adaptation is more general and should also be
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Figure 22. Partial view of chimera mesh after five remeshings of Cartesian adaptation.

Figure 23. Density lines with DNC/FVW-3 method on the adapted mesh.

applied to rotor in forward flight. The aim of this section is to capture accurately the vortex emitted
at the blade tip and to show the possible improvements by comparing the results obtained with
the JST method. The 3-D compressible Euler equations are solved in a blade-attached rotating
reference frame. The flight conditions correspond to tip Mach number Mtip=0.662 and a collective
pitch angle �c=7.5◦. The first computation is performed with automatic mesh generation and the
second using automatic mesh adaptation technique. For the third-order numerical scheme, it was
decided to apply the FV-3 scheme on the blade mesh. Indeed, it has been shown, in the calculation
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Figure 24. Entropy error at the wall for JST method on the single block fine mesh and on the adapted mesh.
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Figure 25. Entropy error at the wall for FVW-3 scheme on single block mesh and for
DNC/FVW-3 method on the adapted mesh.

of the previous test case for the NACA0012 airfoil, that for a regular mesh, it was possible to
obtain an accurate solution without using weighted extension.

The equations are advanced in time using a backward Euler scheme with factorized LU implicit
stage [11] and the CFL number is chosen equal to 15. Finally, linear fourth-order dissipation
coefficient is chosen equal to 1

12 on blade mesh and equal to 0.014 on Cartesian mesh. Furthermore,
there is no addition of second-order non-linear artificial viscosity.
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Figure 26. Chimera mesh without adaptation.

Iterations

L
o

g
(r

e
si

d
u

a
lr

o
)

200 400 600 800 1000 1200 1400

10-4

10-3

10-2

10-1

JST (initial mesh)
DNC/FV-3 (initial mesh)

Figure 27. Convergence history on initial mesh, CFL=15.

4.3.1. Automatic Cartesian mesh generation. No adaptation to the solution. As a preliminary step,
the automatic mesh generation is used to generate the background mesh. The mesh of the blade
is made of 140×26×17 cells. The minimal number of points of Cartesian grids in each direction
is set to 6 points. The step factor between two consecutive grids is chosen equal to 3. With these
parameters, the procedure generates 140 000 points in seven Cartesian blocks. The initial mesh
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Figure 28. Vorticity iso-surface on the initial mesh.

Figure 29. Partial view of Cartesian mesh after 10 remeshings.

is shown in Figure 26. In Figure 27, the convergence histories of the second- and third-order
schemes are similar. After 1500 iterations, the residual is decreased by four orders. When looking
to the iso-vorticity surface (‖curlV ‖=0.8) in Figure 28, one can notice that the tip vortex is not
captured and the wake is strongly dissipated. Moreover, the results are similar with third-order
scheme. The results obtained on this mesh are used to initialize JST and third-order (DNC/FV-3)
mesh adaptation methods.
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Figure 31. Vorticity iso-surface on the adapted mesh (JST method).

4.3.2. Automatic Cartesian mesh adaptation. For the second calculation of the rotor in hover,
the mesh is adapted to the numerical solution and the refinement indicator is the modulus of the
vorticity, i.e. of the curl of the fluid velocity vector. First, 800 iterations are performed on the
initial mesh; then the Cartesian grids are adapted every 800 iterations. For this computation, 10
remeshings are realized. The remeshing frequency is chosen sufficiently big in order to improve the
convergence between the remeshings and consequently enable to obtain a more accurate solution.
The number of points is increased by a growing factor equal to 1.4 at each remeshing. The number
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Figure 32. Vorticity iso-surface on the adapted mesh (DNC/FV-3 method).

Figure 33. Vorticity contour at slices 20◦ in the blade wake on the adapted mesh (JST method).

of points in the last mesh is approximately 7 millions with the second- and third-order methods
and number of blocks is equal to 165 with JST method and equal to 163 with third-order method.
The adapted mesh is displayed in Figure 29 and results are given after 10 000 iterations. The
convergence history of the calculation is plotted in Figure 30. In this figure, we observe the peaks
caused by remeshings as in the case of NACA0012 airfoil test case. The residual is decreased
approximatively by four orders for JST and third-order methods after 10 000 iterations.
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Figure 34. Vorticity contour at slices 20◦ in the blade wake on the adapted mesh (DNC/FV-3 method).

The different iso-vorticity surfaces in Figures 31 and 32 show that the tip vortex is much better
captured and less dissipated than in the previous computation. This fact can be explained by the
higher number of mesh points and their greater concentration in the vortex area. The vortex can
be followed for approximately 1080◦ of age by using JST method. The third-order method allows
to improve this result slightly; it is possible to follow it for approximately 1150◦ of age. Besides,
the blade’s root is better represented by using the third-order method. The vorticity contours for
computations realized with the third-order method (Figure 34) show that the vortices are more
intense even if the difference with the second-order method (Figure 33) is less significant. Besides,
position of vortices are different with third-order method because it allows to reduce dispersive
error. Finally, CPU time required for the computation with third-order method is only 3% superior
to CPU time with JST method. Consequently, these CPU times are quite similar for the two
calculations.

5. CONCLUSION

A third-order mesh adaptation method has been developed successfully for solving Euler equations.
We have shown on basic 2-D test cases that chimera method with automatic mesh generation and
adaptation method can be coupled with third-order numerical schemes enough to achieve a global
accuracy comparable to single block meshes. Moreover, the third-order mesh adaptation technique
has been extended to 3-D Euler equations. The computations of the isolated blade in hover have
shown that the third-order numerical scheme allows to improve the results at a very low cost in
CPU time. Future work will be devoted to further increase the accuracy order of the numerical
scheme on Cartesian grids to improve the wake capture.
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